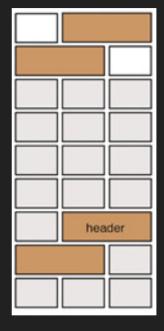
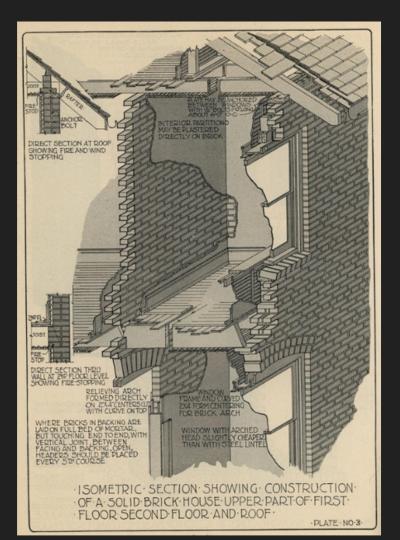
St. Louis Brick

How did St. Louis become a brick city... the usual story




- There are around 10-20
 billion bricks currently in St. Louis City
- After 1849 fire, city construction is required to be masonry
- In 1821, we were already producing 22M bricks per year

Brick 101

"Bonding pattern"

header	

Brick 101

Header

Mortar = binder + aggregate

Handmade Brick

Machine made / Pressed Brick

Brick 201: finishing school

Face Brick

Butter Joint

Concealed ties

Common Brick

1/2" joint

Visible tie bricks

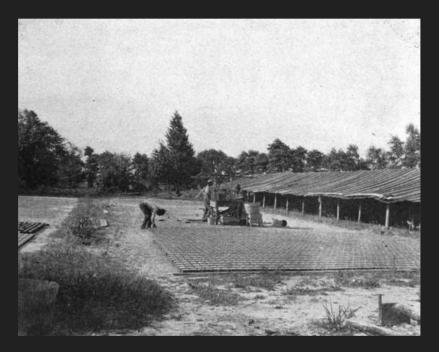
Let's start at the beginning...

"Periglacial loess"

OR

"Brick Earth"

Handmade brick


"My observation leads me to say the the old manual method of brick-making has destroyed many a man in the prime of life, and has undermined the constitutions and wrecked the systems of the most robust natures."

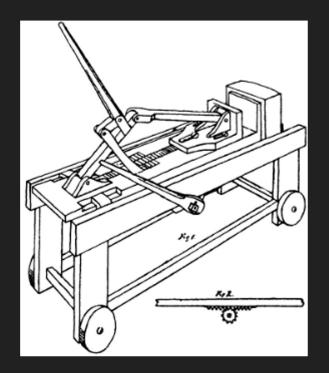
- A Practical Treatise on the Manufacture of Brick, 1895

How handmade bricks were made

- 1. Clay is dug up in fall and winter
- 2. In Spring, clay moved to pit, watered and trampled by oxen
- 3. Tempered: mixed with sand and water to achieve desired consistency
- 4. Molded in wooden boxes "green bricks"
- 5. Moved to drying sheds and stacked
- 6. Fired for three days, left in kiln for another five

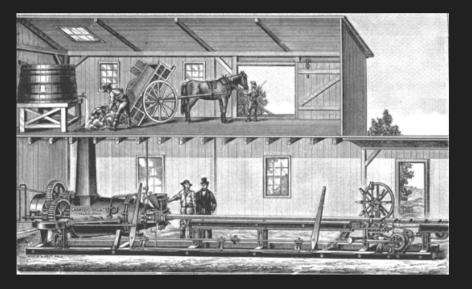
Typical handmade brick construction

Traditional masonry finishes: pigmented lime wash



Considerations with handmade brick

- WEIGHT is the primary driver of brickmaking
 - Average house is ~170 tons
- *clamps*: temporary brick kilns built on the building site
- Clay destroys machinery
 - Cast iron molds replaced *three times* a year



The rise of the machines

- Early attempts at wooden machines in the late 18th century
- First "successful" machine completed in Cornwall, NY in 1835
- Repressing machine and single-brick machines widely employed for face bricks

Slow pace of mechanization

- In 1867, over 20 different brick machines were published in Scientific American
- Early machines could produce 15,000 bricks per day... compared to 10,000 for the hand-made process
- Two problems had to be solved
 - How to remove the seam common with early brick presses
 - Uniform moisture content throughout the brick

Thanks to James Eads ...and railroads

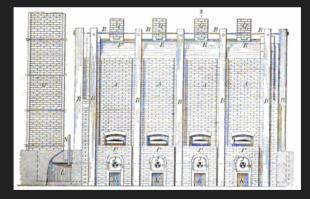
Eads conducted compression strength tests:

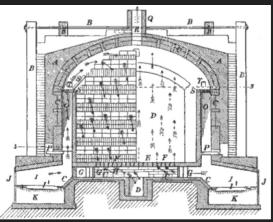
- Hand-made brick: 65 tons
- Machine-made brick: 160 tons

All of Hydraulic Brick Company's red clay was shipped into the city by rail

St. Louis: Home of the dry-press brick

1. Plow only a few inches deep

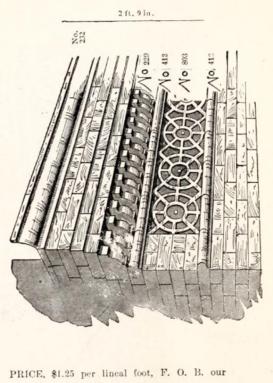

2. Leave to dry in the sun, then store in sheds


4. "Pulverized": lifted up in an elevator and dropped through a series of sieves

- Good clay is "torn" not crushed, ground, etc.
- 5. Pressed only once! The key of the dry-press method

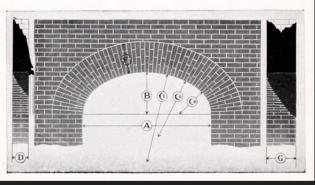
6. Steam dried

7. Fired - very slowly and carefully to maximize moisture retention

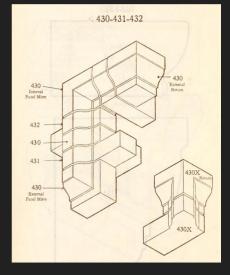


Architectural Consequences

Catalog cornices

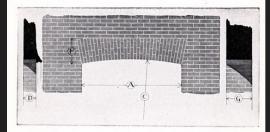

works. Returns extra.

Kit arches


HYDRAULIC-PRESS BRICK COMPANY

ELLIPTIC ARCH

Can Be Made With Moulded Reveal



Kit arches

SEGMENT ARCH WITH FLAT TOP

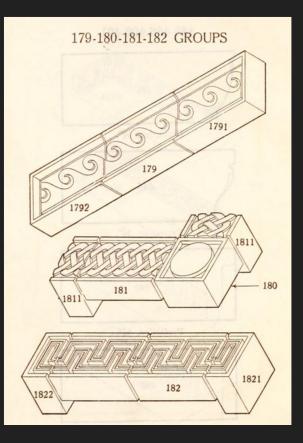
Can Be Made With Moulded Reveal

GIVE FOLLOWING DETAILS:

- A-Width of opening.
- C-Radius.
- D-Depth of reveal or soffit.
- F-Height of face.
- G-Depth of reveal when faced on both sides.
 - If on piers, give width of pier. Size of joints.
 - We provide for $\frac{3}{16}$ inch joints unless otherwise specified.

ANGLE BRICKS.

No. 212.



No 212, with plain square brick, can be used to turn any angle for bay windows or for buildings built on lots of irregular shape. Projection, $4\frac{14}{2}$ inches.

Decorative elements

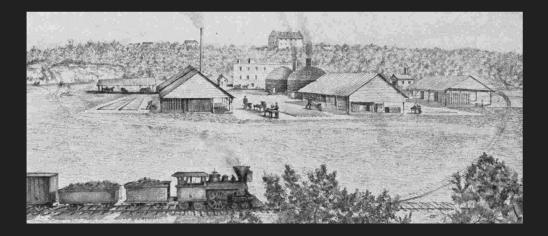
Hydraulic Brick Company

- 42M brick produced in 1882
- Accounted for ½ of all STL brick production

Anthony Ittner

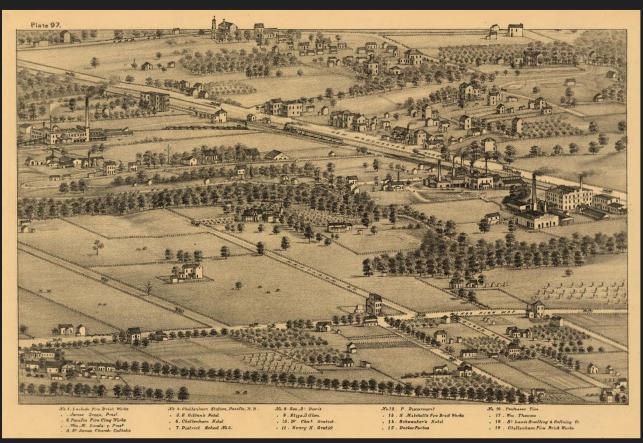
- Born in Lebanon, OH
- Dropped out of school at 9
- Started as a bricklaying apprentice
- Ittner brick company HQ in Swansea, IL
 - 132,000 bricks a day!
 - employed 150 men
- City councilman, state legislator, and congressman
- Co-founder of the National Brick Manufacters Assosciation

Ittner brick buildings

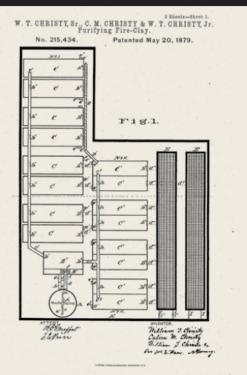


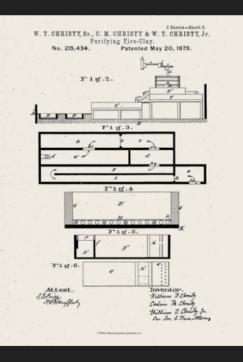
e Southern Hotel in 1868, looking southwest from the intersection of Walnut and 4th Streets Image courtesy of the Missouri History Museum

Laclede - Christy Fire Brick Company



 Laclede Fire Brick founded by James Green, a contractor and furnace builder


- Christy Clay Company founded by William Christy
- Run by his two sons, William Jr. and Calvin


Cheltenham clay vein: the good stuff

Best = glass refractory Better = fire brick Good = face and ornamental brick

Making firebrick

Winkle Terra Cotta

- Terra cotta first used in buildings in 1853
- Clay for Winkle Terra
 Cotta came from
 Glencoe, MO
- The highest quality clay possible

A lighter touch: the early 20th century

The art of brick craft

Post-WWI: Texture and "post-modern" bonding patterns

Post-war: from cement block to veneer

- Exclusively portland cement mortars
- Hard shale bricks with artificial colorants
- Expansion joints and metal ties

Modern day: protecting our historic brick

Two problems with portland cement:

- Too hard for soft brick
- Inhibits effective drying of porous bricks